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SUMMARY 
A finite volume computational scheme to solve the Navier-Stokes equations for the laminar flow fields of 
partially enclosed axial and radial jets impinging on a flat plate has been devised and tested. This scheme 
is based on the SIMPLEC technique. However, because of the backflow at the 'outflow' boundary, the 
SIMPLEC pressure correction technique has to be modified. The need for this modification, necessitated 
by the convergence failure, showed the 'hidden' pressure boundary condition of SIMPLE-type techniques. 
Test computations with the present scheme for flows in a channel with a built-in cylinder show that the 
location of the exit boundary affects very slightly the separated flow behind the cylinder. Computed Squire 
jet flows compare quite well with the available analytical solution. Finally, impinging radial jets have been 
computed for different Reynolds numbers. The results show the critical Reynolds number below which a 
steady solution is obtained and above which periodic and eventually chaotic flows result. 
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1. INTRODUCTION 

Jets impining on a surface can result in large heat or mass transfer at  the point of impingement. 
Hence they find important practical applications in the heating, cooling or drying of product 
surfaces in the paper, glass, metal and textile industries. The jets discharge from round or 
rectangular slots and often a bank of such jets is used in application. These jets can be axial or 
radial (see Figures 1 and 2). 

An axial jet (Figure 1) impinging on a flat plate produces a very large transfer coefficient at 
the reattachment point. Away from the reattachment point the transfer coefficient decreases 
rapidly. A radial jet (Figure 2) discharges from the side of the feed tube and reattaches on the 
impinging plate because of the Coanda effect. Here, instead of a reattachment point, one obtains 
a reattachment line in the form of a closed curve. The transfer coefficient is moderately high on 
the reattachment line and decreases away from it. For a round feed tube the radius of the 
reattachment circle depends on the geometrical and flow parameters. The main advantage of a 
radial jet is that the moderately high heat or mass transfer can be distributed over a larger area 
than for an axial jet; the size and location of this area as well as the flux density can be easily 
controlled by changing the geometrical parameters (e.g. h, the distance between the jet and the 
impinging plate) or flow parameters (e.g. the Reynolds number at the jet discharge). For an axial 
jet these parameters can essentially change the flux density at the reattachment point. 

A large number of experimental investigations of heat and mass transfer on a surface by a 
single or a bank of round or rectangular axial jets have been carried out by a group at the 
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Figure 1 .  Schematic diagram of axial impinging jet 

rr 
Figure 2. Schematic diagram of radial jet 

University of Karlsruhe. The results with empirical formulae for the Nusselt and Sherwood 
numbers have been summarized by Martin.’ 

For laminar and turbulent radial jets impinging on a plate, Page et a1.’ made an analytical 
study of reattachment assuming that the velocity profile of the jet can be described by the 
boundary layer theory. Their results predict reasonably well the reattachment radius of the 
turbulent jet, but they cannot predict the near or far fields of the flow. Ostowari et a1.j have 
presented experimental results of heat transfer on the impinging plate for turbulent radial jets. 

The optimum application of impinging jets for maximum heat and mass transfer depends on 
the flow structure, which in turn depends on the geometrical parameters such as R,  h, L (see 
Figures 1 and 2) and the angle of inclination of the jet exit with respect to the impinging plate. 
The flow structure of a reattaching jet is complex, especially that of a reattaching radial jet, since 
a separation bubble in the form of a vortex ring will appear around the axis below the feed 
tube. The shape and size of this vortex ring as well as the radius of the reattachment circle 
depend on the geometry, angle of inclination and Reynolds number. The effect of the Reynolds 
number is even more complicated, since at a sufficiently high Reynolds number the laminar jet 
may undergo a transition to turbulence before or after hitting the impinging surface. For an 
axial jet the peak value of heat transfer may appear downstream of the reattachment point.’ 
The transition to turbulence after the reattachment on the impinging plate may be the reason. 
As a turbulent jet spreads radially after impinging, the cross-sectional area of the flow increases, 



RADIAL JET REATTACHMENT FLOWS 63 1 

thereby reducing the velocity. This may result in a relaminarization of the flow. An impinging 
radial jet may show self-sustained oscillation. Ostowari et al. observed inherent non-steadiness 
of the reattachment location of turbulent radial jets. 

The complete near- and far-field flow structure of impinging jets can be simulated only by 
solving the full, non-steady Navier-Stokes and energy equations. The results will show seperated 
zones and steady or unsteady reattachment. The main difficulty in computing the flow field of 
an impinging jet comes from the entrainment. The solid walls (e.g. the impinging plate) and the 
inflow boundary of the jet exit are clearly defined for the computational domain. The rest of 
the boundaries are free. However, they cannot be handled as outflow boundaries. Through some 
parts of the boundaries the fluid is sucked into the computational domain, while through other 
parts the fluid leaves the computational domain. This behaviour of the flow has been observed 
by Page et aL2 and Ostowari et aL3 

The purpose of the present work is the development of a computational scheme for Navier- 
Stokes and energy equations and numerical simulations of axial and radial jets with impinging 
plates. The computational scheme is based on the SIMPLEC procedure of van Doormal and 
R a i t h b ~ . ~  It is shown that for the present geometry the pressure correction of the SIMPLE-type’ 
procedure fails to converge. An investigation of this failure shows the pressure boundary 
conditions implicitly used in SIMPLE and the modifications of the pressure scheme required 
for the convergence. 

In the present work only laminar jets are considered, since the computational scheme 
developed for a laminar jet can be easily used for turbulent jets when the turbulence is described 
by some model equations (e.g. the k-& model). Furthermore, computational results are obtained 
for partially enclosed jets (see Figures 1 and 2), since such jets are often used in practice (e.g. 
electronic cooling and drying). The partial enclosure of the jet by putting a wall on the top 
solves the problem of specifying the boundary conditions on the top. However, flow reversal 
still takes place at  the free boundary. For the validation of the computational scheme, the flow 
of a Squire jet6 has also been computed and compared with the analytical solution. 

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

2.1. Basic equations 

The flow field of a radial jet is assumed to be axisymmetric and is described by the continuity 
and momentum (Navier-Stokes) equations in cylindrical polar co-ordinates (see Figures 1 and 
2). The basic equations written in non-steady form for an incompressible fluid are: continuity 
equation, 

axial momentum equation, 

radial momentum equation, 



632 H. LASCHEFSKI ET AL. 

Here u and v are axial and radial velocity components respectively, p is the pressure, p is the 
density, p is the viscosity and t ,  x ,  and r are time, axial and radial co-ordinates respectively. The 
basic equations are non-dimensionalized as U = u/uav, 6 = v/uav, j5 = ( p  - pref)/pu&, X = x /R ,  
F = r /R,  L = L/R,  h = h/R and H = H/R,  where u,, is the average velocity at the exist and prcf 
is the reference pressure. The dimensionless equations contain as parameters the Reynolds 
number Re = uavR/v. The non-dimensional equations will not be presented here. 

2.2 Boundary conditions 

Figure 3 shows the computational domain for the radial jet. 
No-slip conditions on the solid walls give 

u = 0, (44  

v = 0. (4b) 

At the jet discharge measured or physically feasible velocity profiles for u and v can be used. 
We have carried out computations with both parabolic and uniform (top-hat) profiles at the 
exit. There is not much qualitative difference in the flow structure but some quantitative 
difference in the wall shear. More accurate computations should include the feed tube. However, 
this has been avoided in order to reduce the computational cost. In the present computations 
we have assumed a parabolic profile at the feed tube exit. The main problem is the specification 
of the nominal outflow boundary condition at CD in Figure 3, since this boundary condition 
should allow for the ambient fluid to be sucked into the computational domain across the upper 
part of the boundary and to leave the computational domain across the lower part of CD. 

The computational results should be reasonably independent of the value of L or the position 
of CD. This problem of the outflow boundary condition has been discussed by Ranna~her ,~  
who suggested a ‘natural’ condition which in non-dimensional form is given as 

( 5 )  

where d, stands for the gradient of the velocity vector 6 in the normal direction to the boundary. 
For non-dimensional p = 0 one obtains ant? = 0. In other words, if the exit pressure is constant, 
the velocity gradient in the normal direction at the exit is zero. The discussion in the next section 
on the ‘hidden’ boundary condition for the pressure will show that a modification of the 
computational scheme with constant pressure at the exit is required in order to obtain a solution. 

a,+ + p = 0, 

p axls of symmetry 

Figure 3. Computational domain for radial jet 



RADIAL JET REATTACHMENT FLOWS 633  

Computational tests of flow fields in a channel with an obstacle (von Karman vortex street) 
show that the boundary condition (5) is independent of the length of the computational domain.' 
Such tests have also been performed in the present work. 

3. METHOD O F  SOLUTION 

The basic equations are solved numerically by a modified SIMPLEC-based4 finite volume 
technique on collocated grids (see Figure 4). For the discretization of the momentum equations 
central differences have been used for the viscous fluxes. The convective fluxes have been 
determined through the deferred correction approach first suggested by Khosla and Rubin.' 
According to this technique, the convective flux I ,  is split into an implicit part expressed through 
a upwind difference scheme (UDS) and an explicit part containing the difference between the 
central difference scheme (CDS) and UDS approximations: 

1:'' = (UDS)"" + @(CDS - UDS)". (6) 

Here @ is the flux-bending factor and n is the time level. When an iteratively converged solution 
for level n + 1 is obtained, the discretization of equation (6) becomes tantamount to a second- 
order-accurate scheme. For a time-explicit non-iterative solution with @ = 1 we obtain second- 
order accuracy of central differences. 

The flow field is obtained in two steps: in the first step the momentum equations are solved 
for a known pressure field; in the second step the solution of the continuity equation is obtained 
in an indirect way. A pressure-velocity correction in each discrete cell is performed in order to 
obtain a locally solenoidal velocity field. In order to avoid pressure oscillations of collocated 
grids, the momentum interpolation technique suggested by Maliska and Raithby l o  has been 
used in the pressure-velocity correction. It is this pressure-velocity correction technique that 
distinguishes between the original marker-and-cell (MAC) technique,' SOLA,12 SIMPLE4*' 
and its derivatives. 

For the present problem the SIMPLE scheme of pressure correction failed to converge because 
of the backflow across the nominal exit boundary CD (see Figure 3).  In order to understand 
why SIMPLE fails, we look into the details of how SIMPLE works; in particular, we look into 
the implicit or 'hidden' pressure boundary condition13 that SIMPLE uses. 

L x , i  
Figure 4. Collocated grid 
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Following the notation of Reference 5,  the discretized x-momentum equation is written as 

ui,jui.j - 1 “nbUnb = - (P i+  1 / 2 , j  - P i - 1 / 2 , j ) A r + b i , j .  (7) 

Writing u = u*+u’ in equation (7), where u* is the value of u before and u’ after correction due 
to the iteration, and neglecting 1 an&,b (SIMPLE assumption), one obtains 

Similarly the r-momentum equation gives 

and the continuity equation gives 

C(ru’Ii+ 1 p . j  - (rU‘)i- I / z , j ) A r  - C ( W i . j +  112 - ( r u ’ ) i , j -  1/21Ax = - D .  1.1’ ‘ (10) 

where Di, j  is the residual divergence in the cell. Equations (8HlO) can be combined to obtain 

This pentadiagonal equation is the pressure correction equation. Its main diagonal coefficients 
are the sum of the off-diagonal coefficients. This guarantees the diagonal dominance of equation 
(1 1). 

The relation between the coefficients of equation (1 1) and the discretized momentum equation 
(7) should be noticed. When the coefficients of equation (7) are interpolated on the cell boundary, 
the reciprocals of these interpolated values are the coefficients of equation (11). A problem 
appears on the boundary. If (i+), j) is a point on the boundary (see Figure 4), the coefficient 
ai+  is undetermined, since it cannot be interpolated from the node ( i +  1,j) which lies outside 
the computational domain. Equation (1 1) can be easily solved if one assumes 

~ I + l . j  = P l , j .  (12) 

ap’lan = 0, (13) 

This reduces to the condition 

i.e. the normal gradient of the pressure correction is zero on the boundaries. Equation (12) also 
implies that the velocity on the boundary cannot be corrected (see equation (8)). This is perfectly 
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acceptable on solid walls with the no-slip condition or for the Dirichlet condition in general, 
but not on a boundary where the flow velocity or direction is not known a priori. In the original 
SIMPLE algorithm’ the velocity correction at the outflow boundary of the internal flow is 
performed by imposing global continuity condition there.4 This is not possible when a backflow 
at the exit appears, since then the global mass flow is not a priori known. It should also be 
mentioned that the use of conservation of global mass flow makes equation (8) ~verdetermined.~ 

This problem of the pressure-velocity correction on the outflow boundary can be resolved if 
one uses instead of equation (13) a constant pressure on the boundary. This implies zero pressure 
correction on the boundary. If the boundary is denoted by (i+i,j), the term p i +  l , j  in equation 
(11) is set to zero, since the node (i+ 1 , j )  lies outside the boundary. However, lies inside the 
computational domain. The (ai+ 1,2, d-’ for this term is calculated from a linear extrapolation 
of the coefficients at (i,j) and (i - 1, j). Even with pcD = constant, equations (8) and (9) can be 
used for the velocity correction on the ‘outflow’ boundary without imposing global continuity. 
Once the velocity field is obtained, the global continuity can be used to check the accuracy of 
the solution. 

Chuang and Wei14 computed semi-enclosed compressible turbulent impinging jets with the 
SIMPLEC algorithm. They have not pointed out any necessary modification of the algorithm. 
It should be noted that for compressible flows the pressure is not decoupled from the velocity 
field. Hence the pressure-velocity correction to satisfy the continuity equation has a different 
implication than for incompressible flow. The success of Chuang and Wei14 in the computation 
of compressible flows does not imply that incompressible flows in the same geometries can be 
calculated by the method of reference 14. Furthermore, it should also be noted that SIMPLEC 
requires a modification of the pressure correction when substantial backflow at the exit appears. 
For a small amount of backflow the velocity correction at the exit cells can possibly be performed 
using the global continuity ~ o n d i t i o n . ~  This will naturally reduce the accuracy of computations. 
The results of reference 14 do not indicate much backflow at the exit. 

To summarize, we note that for the present problem a constant pressure at the exit 
(pcD = constant) is the correct boundary condition for the pressure. This is consistent with 
equation (5). 

The computations have been carried out on meshes of 102 x 202 and 102 x 402 for the test 
case of a square cylinder in channels of length L = 10 and 20. Test computations for one case 
show that the Strouhal number S computed with a grid of 102 x 202 differs from the 
grid-independent S by less than 4%. 

The impinging free jets have been computed with grid of 194 x 322. Although the present 
code is able to compute time-implicit results iteratively, we have done here only time-explicit 
computations. The time step At has been chosen to satisfy the Courant-Friedrich-Lewy (CFL) 
condition for stability and the grid Fourier number restriction. One test case of the flow in a 
channel with a rectangular cylinder was calculated with the time step obtained from the stability 
condition and a reduced (50%) time step. The difference in Strouhal number was less than 3%. 

4. RESULTS AND DISCUSSION 

4.1.  Test computations for  flows in a channel with an obstacle 

A large number of test cases have been computed with the present scheme. In order to 
determine whether the present scheme can handle unsteady, oscillatory flows, computations are 
first performed for two-dimensional flows in a channel with a square cylinder in the middle for 
Re = 250. This Reynolds number is based on the cylinder height. Figure 5 shows a schematic 
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Figure 5. Schematic diagram of computational domain of 2D channel with square cylinder 

diagram of the computational domain. All the lengths are non-dimensionalized with the cylinder 
height. At the channel entry a parabolic profile for u is used. The computations are performed 
in channels of non-dimensional lengths L =  10 and 20. The flow in the cylinder wake is 
oscillatory and the Strouhal number S based on the cylinder height and the average velocity is 
found to be 0174 for both L = 10 and 20. Figures 6 and 7 show the contours of the lines of 
constant u and u in the wake of the cylinder up to a length L = 10. The double lines represent 
the results for L = 10 and 20. They show that the flow structures are absolutely identical 
qualitatively and almost identical quantitatively irrespective of whether the exit boundary 
conditions is applied at L = 10 or 20. 

4.2. Computations of Squire jets 

Further test computations are performed for Squire jets.6 These are radial jets (see Figure 8) 
for which Squire6 gave an approximately analytical similar solution. Figure 9 compares the 
halfwidths of the jet (0 = 90") for Re = 50, 100 and 500. The Reynolds number here is based 
on the average velocity u,, at the tube discharge and the height of the opening, d .  In the analytical 
solution of the Squire jet a point source at the feed tube axis has been assumed (see Figure 8), 
but in the numerical solution the flow at the tube discharge is assumed to have a parabolic 
profile. Hence precisely at the jet exit the halfwidths of the Squire solution and the numerical 
solution do not agree well. However, at Y = r/d 2 4 the two solutions are indistinguishable from 
each other. 

0 2 4 6 8 10 
x/L 

Figure 6 .  Superimposed contour lines of constant u-velocity for computations with exit boundary condition applied at 
L = 10 and 20 
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Figure 7. Superimposed contour lines of constant u-velocity for computations with exit boundary condition applied at 
L = 10 and 20 

rv u 

Figure 8. Schematic diagram of Squire jet6 

4.3. Computations of impinging je t s  

A number of semi-enclosed laminar axial and radial jets impinging on a flat plate have been 
computed. 

Figures l q a )  and l q b )  show a typical velocity vector plot and streaklines respectively of a 
semi-enclosed radial jet impinging on a flat plate. The Reynolds number Re based on the average 
velocity at the exit and the exit height R is 500. The non-dimensional distance between the feed 
tube and the plate is h = 2. At the exit of the computational domain, ambient fluid flows into 
the computational domain near the top and out of it at the bottom near the impinging plate. 
A separated dead-water zone appears directly below the feed tube. It is bounded by a tyre-shaped 
vortex ring. The streaklines (Figure lqb)) show the vortex structure clearly. The influence of 
the Reynolds number for the particular geometry of Figure 10 has been thoroughly investigated. 
It was observed that when Re exceeded a certain critical value Re,, a steady solution of the 
unsteady equations could not be obtained. The value of Re, is also strongly dependent on the 
upwind fraction of the flux-blending difference for the convective term. The reattachment radius 
naturally depends strongly on the flow Reynolds number. Figure 11 shows the non-dimensional 
reattachment radius r J R  versus the Reynolds number for different upwind fraction 0. For 
approximately full central differencing (0 = 0.9) the critical Reynolds number is 675. With 
Q, = 0.1 this critical Re is 950. It is interesting to note that Re, depends linearly on 0 (see 
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Re-500 
Figure 9. Comparison of analytical solution6 and present computations of halfwidth distribution of Squire jet 

Figure 12). For @ = 1 (fully central space differencing) one obtains from extrapolation of the 
curve in Figure 12 Re, = 634. The lower curve shows the fraction of numerical viscosity as a 
function of the upwind fraction 0. This has been obtained by assuming that the central differences 
possess zero numerical viscosity and the computed Re, signifies the sum of physical and 
numerical viscosities. For 90% upwind (@ = 01)  the numerical viscosity vN/v is 33% and for 
0 = 0.9 vN/v is less than 3%. 

The computations break down (diverge) with @ = 1. Hence further computations have been 
performed for the non-steady cases with @ = 09. It is observed that a periodic flow field is 
obtained up to an Re of 760. This periodicity can be quite clearly discerned by observing the 
wall shear on the plate. The reattachment radius moves periodically by nearly 5%. 

For the periodic flow for Re = 720 the velocity components u and u at the location 
x / R  = 0.025, r /R  = 6.5 have been recorded over a period of time. Figure 13 shows the time series 
for the v-component. Figures 14 show the corresponding frequency analysis. A dominant 
frequency is apparent. The Strouhal number S =fR/u,, is 0.05. 

Figures 15(a) and 15(b) show streaklines and velocity vectors at different non-dimensional 
times z = tu,,/R for Re = 800. The flow structure has changed completely. A non-steady 
non-periodic flow field is obtained. Figures 15(al) and 15(bl) show that at z = 0 the jet comes 
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Figure 10. Typical (a) velocity vectors and (b) streaklines showing core of vortex ring at left side of reattachment 

(Re = 500, h / R  = 2) 

Figure 11. 
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Figure 12. Critical Reynolds number Re, and fraction of numerical viscosity, v,!,, versus upwind fraction Q, (@ = 1 : 
full central difference with zero numerical viscosity) 
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Figure 13. Time series of o-component of velocity at x / R  = 0.025, r /R  = 6.5 (Re = 720, CP = 0.9) 

almost parallel to the plate and then sharply turns towards the plate at between r /R  = 5 and 
6. Vortices are formed between the impinging plate and the jet and between the top plate and 
the jet. These vortices guide the jet axis. However, the vortices are not fixed and vortex shedding 
is observed in successive figures. The vortices even lift the jet slightly from the plate (Figure 
15(a5)). Some structural similarity of the flow fields at T = 0 and 2800 is apparent. However, the 
time series of the radial velocity u at the chosen point ( x / R  = 0.025, r /R  = 6.5) does not indicate 
periodicity (see Figure 16). Figure 17 shows the Fourier analysis of the time series of Figure 16. 
A dominant frequency is not present. The flow is possibly chaotic. It should be mentioned here 
that the present results of the onset of chaos at high Reynolds number should only be treated 
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Figure 14. Frequency spectrum obtained from Fourier analysis of time series of Figure 13 

as an indication, since the jet flow is assumed axisymmetric. A conclusive study of the onset of 
chaos will require the simulation of 3D flow. 

5.  CONCLUSIONS 

The computational scheme based on modified SIMPLEC and velocity boundary conditions at 
the outflow works satisfactorily for radial jet reattachment flow where a flow reversal at the 
nominal outflow boundary takes place. The flow structure of the reattaching radial jet is highly 
complex. For a given geometry a critical Reynolds number exists below which a steady flow is 
obtained. Once Re exceeds the critical value, a periodic flow with changing reattachment radius 
is first obtained. At still higher Reynolds number the periodicity is lost and the flow becomes 
possibly turbulent. The present study has been carried out for axisymmetric jets. A definitive 
study of the onset of turbulence indepndence of Reynolds number will of course require a 
three-dimensional flow investigation. 

In the present work the influence of the impingement plate radius L has not been studied. 
However, some test runs on the influence of L on the flow field were reported in Reference 8. 
Results for reattaching axial and radial jets computed with L = 10 and 15 show that with larger 
L the vortex between the radial jet and the upper wall becomes more pronounced and influences 
the reattachment position. For the case where the distance between the upper wall and the jet 
discharge is smaller than the corresponding distance of the impinging plate the jet still reattaches 
on the impinging plate for L = 15. However, for cases with the upper wall distance larger than 
the impingement plate distance the flow remains qualitatively the same for L = 10 and 15. 
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Figure 15. (a) Streaklines and (b) velocity vectors at different times T for Re = 800 (@ = 0.9; typical non-steady 
non-periodic flow) 
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Figure 15  (continued) 
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Figure 16. Time series of u-component of velocity at x / R  = 0.025, r / R  = 6.5 (Re  = 800, @ = 0.9) 
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Figure 17. Frequency spectrum obtained from Fourier analysis of time series of Figure 16. 
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